Pages

Wednesday, 16 October 2013

Facts About CMS Pulse Oximeters

By Madeline Pittman


CMS pulse oximeters are pieces of equipment used to perform pulse oximetry. This kind of oximetry is a non-invasive technique for monitoring the level of saturation of Oxygen gas in the body. This equipment was first invented by a physician called Glenn Allan Millikan in 1940s. This first device operated on two wavelengths and was placed on the ear. The two wavelengths were red and green filters.

This original model was later improved by some physician called Wood in 1949. Wood incorporated a pressure capsule for squeezing blood out of the ear to get zero setting in an attempt to get absolute Oxygen saturation level. The present models work on the same principals as the original one. The working principal was however difficult to implement due to unstable light sources and photocells.

Oximetry itself was initially developed in 1972 at Nihon Kohden by two bioengineers, Aoyagi and Kishi. These two utilized the ratio of infrared to red light absorption of pulsating constituents at measuring sites. Commercial distribution of oximeter happened in the year 1981 through a firm called Biox. By then, the device was majorly utilized in operating rooms and firms that produced it concentrated most of their advertising in the same direction.

Oximetry is a very crucial noninvasive way of determining the level of oxygen in the human body. It uses a pair of tiny light emitting diodes that face a photodiode through a translucent part of the body. Such translucent parts include fingertips, toe tips, and earlobes. One LED is red while the other one is infrared. The infrared LED is normally 940, 910, or 905 nm while the red one is usually 660 nm.

The rate of absorption of the two wavelengths differs between the oxygenated and deoxygenated forms of oxygen within the body. This difference in absorption speed can be utilized to estimate the ratio between deoxygenated and oxygenated blood O2. The observed signal changes over some period with every heartbeat because arterial blood veins contract and expand with each heartbeat. The monitor is capable of ignoring other tissues or nail make-ups by monitoring the changing portion of the absorption spectrum only.

By observing the varying absorption section alone, the blood oxygen monitor only displays the percentage of arterial hemoglobin in oxyhemoglobin configuration. Patients without COPD but with hypoxic drive issues have a reading that ranges between 95 and 99 percent. Those with hypoxic drive issues normally have values that range between 88 and 94 percent. Usually figures of 100 percent may suggest carbon monoxide poisoning.

An oximeter is useful in a number of applications and environments where the oxygenation of a patient is unstable. Some of the major environments of application include intensive care units, surgical rooms, hospital and ward settings, recovery units, and cockpits in unpressurized aircrafts. The limitation of these gadget is that it only determines the saturation of hemoglobin and not ventilation. It is therefore not a complete measure of respiratory adequacy.

CMS pulse oximeters are made in several varieties. Some are inexpensive costing a few dollars whereas others are very sophisticated and expensive. They may be purchased from any shop that stocks such pieces of equipment.




About the Author:



 
Blogger Templates